Emmy-Noether-Projekt "Brückenschlag zwischen Geodäsie und Seismologie"

Strain partitioning at the eastern Pamir-Alai revealed through SAR data analysis of the 2008 Nura earthquake

Teshebaeva, K., Sudhaus, H., Echtler, H., Schurr, B. and S. Roessner (2014)

Geophysical Journal International, 198(2), 760-774 ,  doi: 10.1093/gji/ggu158


Oxford journals


Abstract

On 2008 October 5, a magnitude 6.6 earthquake struck the eastern termination of the intermontane Alai valley between the southern Tien Shan and the northern Pamir of Kyrgyzstan.

The shallow thrust earthquake occurred in the footwall of the Main Pamir thrust, where the Pamir orogen is colliding with the southern Tien Shan mountains. We measure the coseismic surface displacements using SAR (Synthetic Aperture RADAR) data; the results show clear gradients in the vertical and horizontal directions along a complex pattern of surface ruptures and active faults.

To integrate and to interpret these observations in the context of the regional tectonics, we complement the SAR data analysis with seismological data and geological field observations.

While the main moment release of the Nura earthquake appears to be on the Pamir Frontal thrust, the main surface displacements and surface rupture occurred in the footwall along the NE–SW striking Irkeshtam fault.

With InSAR data from ascending and descending tracks along with pixel offset measurements, we model the Nura earthquake source as a segmented rupture. One fault segment corresponds to high-angle brittle faulting at the Pamir Frontal thrust and two more fault segments show moderate-angle and low-friction thrusting at the Irkeshtam fault.

Our integrated analysis of the coseismic deformation argues for rupture segmentation and strain partitioning associated to the earthquake. It possibly activated an orogenic wedge in the easternmost segment of the Pamir-Alai collision zone. Further, the style of the segmentation may be associated with the presence of Palaeogene evaporites.





 

Geofon

SRCMOD - Database

    • Inversion modelling of geodetic (InSAR) and seismological data
    • earthquake slip complexity and co-seismic rupture history
    • Connecting earthquake models to observations
    • Kinematic earthquake source inversion

     

    In my research i am interested in how earthquakes ruptures behave and how and why earthquakes develop complex ruptures in space and time. Complex means that the earthquake ruptures e.g. across multiple fault planes with different geometries or slows down/accelerates in different areas. We know that earthquakes rupture with different degrees of complexity and we believe that larger earthquake rupture in more complex ways. This would however violate the common assumption of self-similarity of earthquakes across magnitudes. Often the choice of the modeled degree of complexity is however dependent on expert knowledge. Therefore i am looking for data driven ways to help us evaluate possibly rupture segmentation. Also I focus on small to medium sized earthquakes to investigate if we can resolve any complex ruptures from them or if they do not exhibit such behavior. I am using InSAR, GPS and seismological data.

    To asses the evolution of an earthquake rupture in time i have developed a multi-array backprojection code, which is available on github: Palantiri